Overview of ILC project

Toshiaki Tauchi (KEK), Special Mini-Workshop "Undergroud Space Design", KEK, 19th October 2017 T.Tauchi, OHO1995, IR issues - final focus doublet and the detector at JLC, KEK, 28 Aug. - 1 Sep. 1995

Particle Colliders all in Undergroud

Figure 2 The "available" center-of-mass energy of various colliders, plotted against the circumference or total length of each machine. The available energy for proton or antiproton machines is taken to be one tenth of the total energy. For (a) circular electron-positron machines; (b) circular proton or antiproton machines; and (c) linear electron-positron machines.

R.B. Palmer, "Prospects for high energy e⁺e⁻ linear colliders", Annu. Rev. Nucl. Part. Sci. 1990. 40: 529-92

Status after the Higgs discovery, 4th July 2012

Figure 1.6. Left: RG evolution of λ varying M_t and α_s by $\pm 3\sigma$. Right: Regions of absolute stability, metastability and instability of the SM vacuum in the M_t - M_h plane in the region of the preferred experimental range of M_h and M_t (the gray areas denote the allowed region at 1, 2, and 3σ). The three boundaries lines correspond to $\alpha_s(M_Z) =$ 0.1184 ± 0.0007 , and the grading of the colors indicates the size of the theoretical error. The dotted contour-lines show the instability scale Λ in GeV assuming $\alpha_s(M_Z) = 0.1184$. ICHEP2012 : mt=173.18±0.94GeV by CDF,D0

 $m_h = 125.09 \pm 0.24 \text{ GeV PDG2016}$ $m_t = 173.21 \pm 0.51 \pm 0.71 \text{ GeV PDG2016}$ top quark discovery in 1995

D.M. Asher et al., ILC Higgs White Paper, arXiv:1310.0763v3 [hep-ph], December 2013

High Energy Physics has aimed and proceed to probe and unravel foundamental questions in our universe

What is an elementary particle?

questing for the origin of matter.

Why are they so different? 4 Kinds of Forces in Nature

		Electro-weak force		
Forces	Strong force	Electro- magnetic force	e Weak force	Gravity
Exchanged particles	Gluon	Photon	W,Z bosons	Graviton
Magnitude	1	0.01	10 ⁻⁵	10 ⁻⁴⁰
	Nulcei	Molecule, Atom	Neutron decay	Gravitation
	Hadron	Electronics	Nuclei decay	Galaxy
	Nuclear fusion	Synchrotron rad.	Neutrino	Black Hole
	Solar energy	Aurora	Geothermy	Stellar Pinwheel

Unification of the Coupling Constants ?

 $(\alpha_1, \alpha_2, \alpha_3) \to (M_{SUSY}, M_{GUT}, \alpha_{GUT})$

Universe Content

- WMAP 9yr Pie Chart -

from https://map.gsfc.nasa.gov/media/121236/index.html

Higgs boson Production at ILC

Figure 2.7 Production cross section for the $e^+e^- \rightarrow Zh$ process as a function of the center of mass energy for $m_h = 125$ GeV, plotted together with those for the WW and ZZ fusion processes: $e^+e^- \rightarrow \nu\overline{\nu}H$ and $e^+e^- \rightarrow e^+e^-H$.

Is it the origin of masses of elementary particles ?

